%0 Journal Article %J BMC Med Inform Decis Mak %D 2015 %T Archetype relational mapping - a practical openEHR persistence solution. %A Wang, Li %A Min, Lingtong %A Wang, Rui %A Lu, Xudong %A Duan, Huilong %X

BACKGROUND: One of the primary obstacles to the widespread adoption of openEHR methodology is the lack of practical persistence solutions for future-proof electronic health record (EHR) systems as described by the openEHR specifications. This paper presents an archetype relational mapping (ARM) persistence solution for the archetype-based EHR systems to support healthcare delivery in the clinical environment.

METHODS: First, the data requirements of the EHR systems are analysed and organized into archetype-friendly concepts. The Clinical Knowledge Manager (CKM) is queried for matching archetypes; when necessary, new archetypes are developed to reflect concepts that are not encompassed by existing archetypes. Next, a template is designed for each archetype to apply constraints related to the local EHR context. Finally, a set of rules is designed to map the archetypes to data tables and provide data persistence based on the relational database.

RESULTS: A comparison study was conducted to investigate the differences among the conventional database of an EHR system from a tertiary Class A hospital in China, the generated ARM database, and the Node + Path database. Five data-retrieving tests were designed based on clinical workflow to retrieve exams and laboratory tests. Additionally, two patient-searching tests were designed to identify patients who satisfy certain criteria. The ARM database achieved better performance than the conventional database in three of the five data-retrieving tests, but was less efficient in the remaining two tests. The time difference of query executions conducted by the ARM database and the conventional database is less than 130 %. The ARM database was approximately 6-50 times more efficient than the conventional database in the patient-searching tests, while the Node + Path database requires far more time than the other two databases to execute both the data-retrieving and the patient-searching tests.

CONCLUSIONS: The ARM approach is capable of generating relational databases using archetypes and templates for archetype-based EHR systems, thus successfully adapting to changes in data requirements. ARM performance is similar to that of conventionally-designed EHR systems, and can be applied in a practical clinical environment. System components such as ARM can greatly facilitate the adoption of openEHR architecture within EHR systems.

%B BMC Med Inform Decis Mak %V 15 %P 88 %8 2015 %G eng %N 1 %R 10.1186/s12911-015-0212-0 %0 Journal Article %J Proteomics %D 2015 %T Open source libraries and frameworks for biological data visualisation: a guide for developers. %A Wang, Rui %A Perez-Riverol, Yasset %A Hermjakob, Henning %A Vizcaíno, Juan Antonio %X

Recent advances in high-throughput experimental techniques have led to an exponential increase in both the size and the complexity of the data sets commonly studied in biology. Data visualisation is increasingly used as the key to unlock this data, going from hypothesis generation to model evaluation and tool implementation. It is becoming more and more the heart of bioinformatics workflows, enabling scientists to reason and communicate more effectively. In parallel, there has been a corresponding trend towards the development of related software, which has triggered the maturation of different visualisation libraries and frameworks. For bioinformaticians, scientific programmers and software developers, the main challenge is to pick out the most fitting one(s) to create clear, meaningful and integrated data visualisation for their particular use cases. In this review, we introduce a collection of open source or free to use libraries and frameworks for creating data visualisation, covering the generation of a wide variety of charts and graphs. We will focus on software written in Java, JavaScript or Python. We truly believe this software offers the potential to turn tedious data into exciting visual stories.

%B Proteomics %V 15 %P 1356-74 %8 2015 Apr %G eng %N 8 %R 10.1002/pmic.201400377